Event-driven power management
نویسندگان
چکیده
Energy consumption of electronic devices has become a serious concern in recent years. Power management (PM) algorithms aim at reducing energy consumption at the system-level by selectively placing components into low-power states. Formerly, two classes of heuristic algorithms have been proposed for power management: timeout and predictive. Later, a category of algorithms based on stochastic control was proposed for power management. These algorithms guarantee optimal results as long as the system that is power managed can be modeled well with exponential distributions. We show that there is a large mismatch between measurements and simulation results if the exponential distribution is used to model all user request arrivals. We develop two new approaches that better model system behavior for general user request distributions. Our approaches are event driven and give optimal results verified by measurements. The first approach we present is based on renewal theory. This model assumes that the decision to transition to low power state can be made in only one state. Another method we developed is based on the Time-Indexed Semi-Markov Decision Process model (TISMDP). This model has wider applicability because it assumes that a decision to transition into a lower-power state can be made upon each event occurrence from any number of states. This model allows for transitions into low power states from any state, but it is also more complex than our other approach. It is important to note that the results obtained by renewal model are guaranteed to match results obtained by TISMDP model, as both approaches give globally optimal solutions. We implemented our power management algorithms on two different classes of devices: two different hard disks and client-server WLAN systems such as the SmartBadge [19] or a laptop. The measurement results show power savings ranging from a factor of 1 7 up to 5 0 with insignificant variation in performance.
منابع مشابه
Low Power Operating System for Heterogeneous Wireless Communication Systems
Operating systems in embedded wireless communication increasingly must satisfy a tight set of constraints, such as power and real time performance, on heterogeneous software and hardware architectures. In this domain, it is well understood that traditional general-purpose operating systems are not efficient or in many cases not sufficient. More efficient solutions are obtained with OS’s that ar...
متن کاملDynamic Power Management of Electronic Systems
heterogenous components that may be active at different times. In other words, component activity is event-driven. A simple, yet effective approach to reduce the power dissipated by the system consists of disabling (or reducing the performance of) the components when they are inactive (or partially unexploited). Dynamic power management (DPM) is a design methodology that allows power-down (or s...
متن کاملEvent-Driven Power Management for Wireless Sensor Networks
This work was supported by the research commissioned by the Electronics and Telecommunications Research Institute. Abstract. In this paper we propose event-driven power management techniques for wireless sensor networks. To accomplish this we model a sensor network application as a set of application-specific events that the application may contain. Events are first classified into scheduled an...
متن کاملPublication V
Energy consumption of wireless data transmission, a significant part of the overall energy consumption on a mobile device, is context-dependent it depends on several internal and external contexts, such as application workload and wireless signal strength. In this paper, we propose an event-driven framework that can be used for efficient power management on mobile devices. The framework adapts ...
متن کاملEvent-driven and Attribute-driven Robustness
Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description...
متن کاملRapid Prototyping of Power Management Protocols for Sensor Networks: A Case Study
Power management is an important problem in battery-powered sensor networks as the sensors are required to operate for a long time (usually, several weeks to several months). One of the challenges in developing power management protocols for sensor networks is prototyping. Specifically, existing programming platforms for sensor networks (e.g., nesC/TinyOS) use an event-driven programming model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. on CAD of Integrated Circuits and Systems
دوره 20 شماره
صفحات -
تاریخ انتشار 2001